Fibroblast Activation Protein-Targeted Radioligand Therapy with 177Lu-EB-FAPI for Metastatic Radioiodine-Refractory Thyroid Cancer: First-in-Human, Dose-Escalation Study.

Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China. Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore. Department of Surgery, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore. Department of Chemical and Biomolecular Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore. Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore. Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. School of Clinical Medicine, Fujian Medical University, Fuzhou, China.

Clinical cancer research : an official journal of the American Association for Cancer Research. 2023;(23):4740-4750

Abstract

PURPOSE Fibroblast activation protein (FAP) is a promising target for tumor treatment. In this study, we aimed to investigate the safety and efficacy of the albumin binder-conjugated FAP-targeted radiopharmaceutical, 177Lu-EB-FAPI (177Lu-LNC1004), in patients with metastatic radioiodine-refractory thyroid cancer (mRAIR-TC). PATIENTS AND METHODS This open-label, non-randomized, first-in-human, dose-escalation, investigator-initiated trial had a 3+3 design and involved a 6-week 177Lu-LNC1004 treatment cycle in patients with mRAIR-TC at 2.22 GBq initially, with subsequent cohorts receiving an incremental 50% dose increase until dose-limiting toxicity (DLT) was observed. RESULTS 177Lu-LNC1004 administration was well tolerated, with no life-threatening adverse events observed. No patients experienced DLT in Group A (2.22 GBq/cycle). One patient experienced grade 4 thrombocytopenia in Group B (3.33 GBq/cycle); hence, another three patients were enrolled, none of whom experienced DLT. Two patients experienced grade 3 and 4 hematotoxicity in Group C (4.99 GBq/cycle). The mean whole-body effective dose was 0.17 ± 0.04 mSv/MBq. Intense 177Lu-LNC1004 uptake and prolonged tumor retention resulted in high mean absorbed tumor doses (8.50 ± 12.36 Gy/GBq). The mean effective half-lives for the whole-body and tumor lesions were 90.20 ± 7.68 and 92.46 ± 9.66 hours, respectively. According to RECIST, partial response, stable disease, and progressive disease were observed in 3 (25%), 7 (58%), and 2 (17%) patients, respectively. The objective response and disease control rates were 25% and 83%, respectively. CONCLUSIONS FAP-targeted radioligand therapy with 177Lu-LNC1004 at 3.33 GBq/cycle was well tolerated in patients with advanced mRAIR-TC, with high radiation dose delivery to the tumor lesions, encouraging therapeutic efficacy, and acceptable side effects.

Methodological quality

Publication Type : Clinical Trial

Metadata